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Abstract

Viruses remain a significant threat to modern net-
worked computer systems. Despite the best efforts of
those who develop anti-virus systems, new viruses and
new types of virus that are not dealt with by existing
protection schemes appear regularly. In addition, the
rate at which a virus can spread has risen dramatically
with the increase in connectivity. Defenses against
infections by known viruses rely at present on immuni-
zation yet, for a variety of reasons, immunization is
often only effective on a subset of the nodes in a net-
work and many nodes remain unprotected. Little is
known about either the way in which a viral infection
proceeds in general or the way that immunization
affects the infection process. In this paper we present
the results of a simulation study of the way in which
virus infections propagate through certain types of net-
work and of the effect that partial immunization hason
the infection. The key result is that relatively low levels
of immunization can slow an infection significantly.

1. Introduction

In recent years, computer viruses, a type of deliber-
ate fault, have increased dramatically in number, and
they have also begun to appear in new and more com-
plex forms[9], [10], [11]. Asaresult, the task of detec-
tion and prevention of viruses has become increasingly
difficult. Compounding an already difficult problem is
the increased connectivity of modern computer sys-
tems. This exacerbates the problem because viruses and
worms can now use networks as a new medium for
propagation. They can sweep quickly through thou-
sands of hosts, an effect that isfar more damaging than
what would occur in a more traditional, stand-alone
computing environment.

Traditional anti-virus techniques focus typicaly on
detection of the static signatures of viruses. While these
techniques are somewhat effective in their own right,

they do not address the dynamic nature of a virusinfec-
tion within the context of the underlying system. In a
computer network, a virus can propagate through the
network quickly, and it might infect and damage many,
perhaps all, machines before the severity of the situa-
tionis recognized.

A valuable mechanism for tolerating this type of
deliberate fault would be to detect the presence of an
infection in a network at an early stage and to have the
network react to the attack in real time to mitigate the
damage. A number of challenges exist in developing
such a scheme. First, a thorough understanding of the
network-wide characteristics of vira infections is
needed. If such characteristics were known, mecha-
nisms might be developed to detect an on-going, wide-
area infection. Perhaps of greater importance is the
prospect of developing defense mechanisms that would
operate in real time and on a network-wide basis.
Clearly the effect of factors such as the rate and pattern
of infection, the underlying network topology, and sto-
chastic variations in the network must be well under-
stood before a comprehensive view of infection could
be devel oped. Second, techniques for acquiring a global
perspective of the infection and real-time controls of
the network are essential for thwarting viral infections.
This implies the need for real-time, reliable network
monitoring and management, a topic of much ongoing
research [1], [3], [6].

In this paper, we report on a study of network viral
infection. The study was conducted using simulation
and examined several key characteristics of infection,
including the rate of infection through the network and
the rate at which individual nodes are re-infected during
an attack. Asakey part of the study, we have examined
the impact of immunization on infection, a difficult
practical problem in network management. Clearly,
immunization can protect a system from the effects of a
known virus, but in a large network it is essentially
impossible to be sure that all the nodes are properly
immunized. This raises the question of what the effect
might be of immunization that is only effective on cer-



tain nodes. Dealing with this question might also allow
insight into the conscious use of selective immunization
where the task of immunizing a complete network is infea
sible.

The paper is organized as follows. In section 2, we
review the basic concepts of viruses and some of the cur-
rent anti-virus work. Section 3 discusses the factors influ-
encing computer viral infection and the factors used in this
study. We discuss the limitations of analytic modeling in
Section 4, then present the design and framework for our
experiments in section 5. In sections 6 and 7, we present
our experimental results and explore the issue of immuni-
zation, both random and selective. We discuss the open
issues in virus research and summarize the paper in
section 8.

2. Related Work

Viruses and worms are self-replicating programs that
sometimes have the goa of damaging their hosts and
arranging for copies of themselves to propagate to new
hosts [2]. For simplicity we use the term virus throughout
the rest of this paper to mean an infectious agent that can
infect computersto which it has access.

Viruses and worms have been studied extensively by
both the research and the application communities.
Cohen’swork in the 1980’'s formed the theoretical basis for
thefield [2]. In the ensuing decade, many significant scien-
tific and technological advances have been made in the bat-
tle against computer viruses.

The majority of the current anti-virus techniques
employ static scanning methods in which programs are
scanned in search of a sequence of instructions known as
the virus signature. Each time a new virusis discovered, its
signature is added to the database of virus signatures. In
response to this approach, virus writers have developed
more complex and innovative ways to write viruses that are
capable of evading simple scanning (e.g. polymorphic
viruses). Producers of virus protection systems have coun-
tered with new scanning methods to cope with the latest
viruses. This co-evolution, eloquently described by
Nachenberg [9], summarizes the last fifteen years of an
arms race between virus writers and the anti-virusindustry.

Thework on virus protection has produced many useful
tools and technologies. However, the approaches are lim-
ited to the individual properties of the virus, such as the
signature it carries, the types of programs it might infect,
and so on. It is not surprising that each time a new virus
appears, the anti-virus industry finds itself scrambling to
produce yet another defense mechanism. There is an evi-
dent lack of study of virus activities in the context of the
underlying systems with regard to the many system
atributes that might impact the viral infection—few

attempts have been made to investigate how fast viruses
can spread, the patterns of infection, and how factors such
as the network topology affect their prevalence, etc.

Kephart, Chess, and White of IBM conducted a study of
viral infection based on epidemiology models[4], [5].
They constructed an analytical model in which they char-
acterized viral infection in terms of birth rate (the rate at
which machines are infected), death rate (the rate at which
machines are cured), and the patterns of transmission of
information between computers.

The IBM study was based on a model in which viruses
were spread via activities mostly confined to local interac-
tions. The authorsindicate that at the time of the study this
was one of the more prevalent interaction models where
infection takes place when individuals share disks because
“most individuals exchange most of their software with
just a few others and never contact the majority of the
world's population” [4]. Based on this model, they con-
cluded that most virus activities were localized, and virus
propagation rarely reached the exponential rate indicated
by the classical epidemiological models. While their find-
ings are sound and supported by strong empirical evidence,
new patterns of interaction and changes in system connec-
tivity suggest that it is necessary to reevaluate some of the
assumptions and simplifications of the IBM model.

In addition, the epidemiology model used in the IBM
study is primarily concerned with the global aspects of the
viral propagation. Details of individual infections, such as
variations of infection experienced by different hosts dur-
ing a virus attack, are, to a large extent, ignored. While
tracing low-level details of individual infection is an intrac-
table problem in any sizable population, we argue that a
study of carefully selected low-level characteristics can be
beneficial in that it might unveil information useful in
establishing effective defense mechanisms—we will show
such an example in the selective immunization study in
later sections. This type of information cannot be discerned
from study of the global behavior only, and simple analytic
modeling islikely to overlook them.

Finally, we note that in the Serrano project at the Uni-
versity of Cadifornia, San Diego, Marzullo and his col-
leagues are investigating fault tolerance in large networks
including the effects of viral infection [8]. However, their
work is specially tuned to the study of multicast protocols
and the effect on self-propagating attacks. The applicability
of the model istherefore limited.

3. Factors|nfluencing Network Infection

Many factors can influence the way a viral infection
progresses, including those from the environment and
those that are inherent to the infecting agent. The rate of
spread of Melissa, for example, depended on how often



users read e-mail and what entries they had in their address
books. The rate of reading e-mail corresponded to the “pro-
cessing rate” that the virus could expect and the address
book entries defined the topology of the network that the
virus could infect.

Before proceeding with any analysis of infection, a pre-
cise and complete framework for that analysis needs to be
established. The goa of this framework is to identify the
factors that influence infection characteristics and enumer-
ate the vaues that each factor can take. The factors that
affect viral infection are in two areas. (1) the underlying
target computer system, and (2) the infection process used
by the virus.

3.1. Thetarget system

We assume atarget system consisting of alarge network
of heterogeneous nodes connected by some mechanism
that is not necessarily atraditiona network link. For exam-
ple, a node-to-node connection for the Melissa virus
required that the virus obtain a valid e-mail address for a
remote machine and that a mail connection exist between
the machines. A node that was merely connected by an
Ethernet to an infected node, in this case, would not neces-
sarily become infected.

Thefactors of interest pertaining to the target system are
the following:

System Topology. The system topology defines the paths
that avirus can follow when propagating. We note that this
does not necessarily mean either a fully-interconnected
topology or an infection path along every network link.
Our interest lies in the networks used to support critical
infrastructure applications. Such applications employ pri-
vate networks whose topologies are determined in large
measure by the needs of the application [7]. This contrasts
considerably with the fully connected, open nature of the
Internet. In this study, we chose two network topologies—
hierarchical and clustered. By hierarchical me mean a net-
work with a tree like structure in which nodes are con-
nected to parent and child nodes. This topology is typical
of those found in the banking and financial networks. By
clustered we mean a network in which nodes are organized
in clusters that have high connectivity within clusters and
low connectivity between clusters. Thistopology istypical
of many transportation- and energy-control networks.
Node |mmunity. The IBM study characterized nodes as
being in one of two states—susceptible and infected. Once
an infected node is cured, it immediately enters the suscep-
tible state again. We broaden the state space by bringing in
the notion of immunity to represent the lack of susceptibil-
ity of anodeto aparticular virus. For example, a Unix host
is immune to a Windows virus, and a node infected by a
particular virus might not be susceptible to the same virus

at alater time because of changes in the environment such
as patches, upgrades, the repair of a flaw that the virus
exploited, and so on. Using this notion, a node can be in
one of three states—susceptible, infected, and immune.

In the study reported here, for any given model we assume
that nodes can be either permanently immune or either sus-
ceptible or infected. We further assume that once a node
has been infected, i.e, changed from susceptible to
infected, then it remains infected.

Temporal Effects. The tempora characteristics of the
underlying system such as processing and communication
delays are likely to have a significant effect on the propa-
gation of viruses. A virus will have to compete with other
processes for system resources, and so replication and
propagation might take time that is both significant and
variable.

We model the processing time required by a virus to com-
plete the infection of a node as a constant vaue of one
clock tick, and we assume transmission time from one
node to another isinstantaneous.

3.2. Theinfection process

By the infection process we mean the underlying algo-
rithm that the virus uses to propagate itself. It should be
noted that we are not concerned with some of the proper-
ties of the infecting agent such as the payload, i.e., what-
ever code or datait carriesto permit it to inflict damage on
the host. Factors of interest regarding the infection process
are the following:

Propagation Selection. The spread of viruses from one
node to others is determined by the propagation algorithm
of the viral program. It is not necessarily optimal from the
virus point of view to infect everything that it can immedi-
ately.

In this study, we assume that the virus can choose to infect
any subset of the nodes to which its host is connected, and
that each copy of the virus makes independent decisions at
each infection point. The decisions are assumed to be ran-
dom and independent of past infection history.

Multiple Infections. An infected node need not be pro-
tected from subsequent reinfection by the same virus. If
reinfection occurs, a single node might become host to
multiple copies of the virus. In this study, we assume that a
node can be infected multiple times and concurrently by
multiple copies of the same virus.

Stochastic Effects. The infection process will be affected
by non-determinism in the virusitself. A virus will have to
make choices both to improve the chances of its infection
being successful and to improve whatever disguises it
chooses to use.



3.3. Characteristics studied

We studied three characteristics of network viral infec-
tion: total infection time; rate of propagation; and node
reinfection count.

Total infection time is the time taken by the virus to
infect the entire network. Knowing the details of the time
for an infection to spread through an entire network is use-
ful in preparing a response. For example, if the expected
time were especially long it might be possible to continue
normal operations for lengthy periods during an infection.
Thiswould make prompt detection of an infection less crit-
ical. Moreover, if total infection time were lengthened by
certain network design factors, these could be deliberately
introduced.

The generalization of total infection time is the rate of
propagation. By rate of propagation we mean the rate at
which nodes become infected over time during an attack
expressed as the fraction of nodes infected at time t (tota
infection time is the time at which 100% of the nodes are
infected). Rate of propagation isindicative of the nature of
theinfection. In particular, if a pattern of rate changes were
observed, it might be possible to use this as part of an
infection signature. Similarly, changes in rate might show
how timely a response to an attack needs to be deployed. If
for agiven virus and a certain type of network an attack is
known to be dow at some point, the approach to treatment
could exploit this relative “lull” in activity. It might also
indicate that some fraction of the population could expect
to be attacked in a relatively late stage (or early stage) of
the infection so that they could be responsible (or not) for
critical functions. Finally, if widespread immunization isto
be attempted during an attack (assuming that a suitable
“vaccine” could be synthesized in rea time), the preferred
approach to distribution of the vaccine would depend upon
detailed knowledge of the way in which the infection
progresses.

The node reinfection count is the number of times a
copy of the virus visits a given node irrespective of
whether the node has already been infected. In many real-
world scenarios (and in our model), viruses do not keep
track of the hosts that they have infected and so attempt
reinfection of already infected nodes. Knowing how many
times this occurs allows decisions to be made about pre-
vention and treatment. For example, the utility of merely
disinfecting an infected node may or may not be effective,
depending upon whether reinfection islikely to happenin a
rapid succession. Similarly, the rate of reinfection will per-
mit choices to be made about the speed with which immu-
nization needs to become effective. Immunizing a node
onceit has been disinfected might be alengthy process and
its utility is atrade-off that is heavily influenced by reinfec-
tion rates. A final possibility once reinfection counts are

known is to use the characteristics of reinfection that asin-
gle node experiences as part of a loca signature of the
attack.

4. TheLimitationsof Analytic Modeling

In principle, the characteristics of computer viral infec-
tions could be studied using anaytic models, simulation, or
a combination of both. Obvioudly, analytic models are
desirable because they provide the most comprehensive
means to study a problem. However, despite the success of
previous work in analytic modeling, the combination of
complex network topologies, sophisticated infection strate-
gies, and the level of details that we wish to model makes
the type of analytic modeling that has been reported in the
literature intractable.

As an example of the difficulties that arise with attempts
to build analytic models, consider the issue of modeling the
probability of infection for agiven node in the network.To
make the analysis tractable, it has been assumed in some
analytic models that this probability is the same for all
nodes and that it is constant in time. In fact, neither of these
assumptions holds.

The probability that a node becomes infected is not the
same for every node because it is a function of the node's
connectivity and of theinfection characteristics of the vira
program. Similarly, the probability that a node becomes
infected is not fixed in time because, as more and more
nodes become infected, the probability of an un-infected
node becoming infected increases. The stochastic nature of
both the network and the infection processis likely to ren-
der considerable variations in this probability for different
nodes and in different instances of time. Any anaytic
model that failsto capture the variance in these parameters
islikely to bein error.

There is no simplification that can be applied here that
will allow atractable model to be developed nor is it possi-
ble to seek a steady-state solution since by definition, no
meaningful steady state exists. An approach that might be
able to capture the complexity of the systems of interest
and that might be feasible in this case is Markov anaysis.
We are pursuing such models in an ongoing study. The
study reported here was undertaken with simulation.

5. Experimental Design

5.1. Simulation environment

Our experiments have been conducted using a special-
purpose simulation environment that is capable of simulat-
ing thousands of computing nodes with any desired net-
work communications topology and any viral infection



process. The network topology that is used in a simulation
isread by the system from afile that contains a description
of all the nodes in the network and all the inter-node con-
nections.

The file that describes the desired network is synthe-
sized from a high-level specification of the topology so as
to permit rapid generation of different instances of the
same type of topology and instances of different topolo-
gies. This permits handcrafting of detailed requirements or
the creation of a specific network topology of interest.

A virtual time mechanism is implemented to keep track
of network time during simulation. The system simulates
infection decisions and transmission activity for each copy
of the virus on each time tick and monitors the state of the
infection as virtua time passes. Relevant data is recorded
on each time tick and simulation stops when some pre-
scribed state is reached, such as all nodes are infected.

5.2. System modds

A 1,000-node instance for each of the two network
topologies (hierarchic and clustered) was built for testing.
For the hierarchic model, a single root node and a connec-
tivity fan out of at most 20 from each node to its children
was used. For the cluster model, 36 clusters with an aver-
age size of 27 nodes were sparsely connected.

Two viral infection models were analyzed: single fan
out and multiple fan out. By infection fan out we mean the
number of copiesthat asingle copy of the virus can gener-
ate on nodes connected to the host upon which it is execut-
ing. In the single fan out infection model, a virus selects
only one neighboring node to infect (i.e., the fan out of the
virus is one). In this case, new infections occur one at a
time for each copy of the virus and only one copy of the
virusisever replicating actively in the system.

The single fan out infection model represents the slow-
est rate at which an active virus could spread and so we
refer to it as the baseline infection model. This model is
perhaps simplistic but still a possible infection model in
practice. For example, a virus trying to disguise its pres-
ence might very well implement an infection model much
like this, endeavoring to propagate unobserved in the net-
work at a slow speed so asto detonate a payload on all the
nodes in the network at the same time. It appears that the
resources consumed by large numbers of copies of a virus
on a single node is often the first sign that an infection is
underway, and so keeping this factor under control is an
obvious strategy that a stealthy virus would employ.

In the multiple fan out infection model, a single copy of
the virus is able to infect a random number of nodes con-
nected to the infected host (i.e., the fan out of the virusis
greater than one). The random number of new infectionsis
chosen by the virus to be between one and a specified

bound. The bound for any particular infection is set
between two and the maximum fan out that occurs in the
topology (a parameter that is specified in the experiment
configuration).

A few assumptions and simplifications were made to
ensure feasibility of the experiment. First, while multiple
copies of the virus can exist concurrently on the same host,
we assume that the number of viruses on asingle host does
not exceed 100. This is to ensure that the experiment pro-
ceeds at a reasonable speed, and we believe that 100 is a
reasonable value given that more copies will bog down the
host completely. Second, a single starting point was used to
release the virus, and this starting point was randomly cho-
sen in each tria. Finally, the non-determinism of theinfec-
tion process was simulated by repeating simulations using
different random sequences for virus decision making.

6. NetworksWithout |mmunization

In this section we present measurements of viral infec-
tions in networks where none of the nodes was immunized.
These experiments provide insight into the characteristics
of infection and they also serve as the control sample for
the immunization experiments presented in the later sec-
tions.

6.1. Hierarchic topology

Figure 1 shows the distribution obtained from 1,000
runs of the simulation of the total infection time for ahier-
archic network topology with the single fan out infection
model. The most important thing to notein this experiment
is the tremendous variation that exists in the time to infect
the entire network. The fastest total infection time was
31,986 clock ticks and the longest was 160,943 clock ticks,
aratio of over 5to 1. Note that thisis solely the effect of
stochastic variation resulting from randomness in the infec-
tion process—the infection model and all other parameters
were the same in every simulation trial.

Thisvariation isaresult of the sparse connectivity of the
hierarchic topology and the low infection probability of the
baseline infection model (fan out of one). Depending on
the infection process (e.g., which path the infection fol-
lows, etc.), a virus might spend much of its time infecting
and re-infecting a small part of the network, and a consid-
erable amount of time could elapse before it manages to
venture out to other parts of the network.

Figure 2 shows the rate of propagation averaged across
the 1,000 runs of the baseline infection model. Note that
the number of infected nodes quickly rose to 80% of the
total population, and the infection growth leveled off after
that (infecting the remaining 20% of the network took up
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the bulk of the total infection time). What this means is
that, in the late stage of the infection, the virus spent much
of its time revisiting nodes that had already been infected.
Thisresult is consistent with the IBM study. It further con-
firmed that treatment of a viral propagation in its early
stageis both important and advantageous in the prevention
of further propagation. However, it also implies that a con-
siderable fraction of the nodesin a hierarchic network sub-
ject to this type of infection remain uninfected for long
periods of time and this might be exploited to allow some
forms of serviceto be maintained.

Much more rapid propagations were observed when
larger fan outs were specified. Figure 3 shows the average
rate of propagation over the 1,000 runs for infection fan
outs of 2 and 5. Note that the difference in the rate of prop-
agation between the higher fan outs and that of the baseline
case expands severa orders of magnitude. In addition,
compared with the baseline study, there is significantly less
variation in the higher fan out experiments. For example,
thetrialswith afan out of 2 produced atotal infection time
distribution with a mean of 46.9 clock ticks and a variance
of 7.79. Less variance was observed with a fan out of 5,
which produced a distribution with a mean of 23.6 clock
ticks and a variance of 5.19.

A larger fan out value corresponds to a higher infection
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probability. Results of these experiments showed that when
infection probability is high, the sengitivity of the infection
dynamicsto stochastic variation decreases.

In order to better understand what might be happening
during a viral infection, we measured the number of rein-
fections that each node experienced during an infection.
Figure 4 shows the average number of reinfectionsfor each
of the 1,000 nodesin the baseline study. Clearly, some pop-
ulation of the nodes were attacked much more heavily than
others. For example, node 302 was attacked 398 times on
average, while node 525, 526, and 527 were attacked 33
times only. Further investigation showed little variation in
the number of reinfections experienced by the same node
in different trials. That is, the nodes that are attacked often
in one simulation run are likely to be the most often
attacked in other simulation runs, provided that the infec-
tion model remained the same.

Thisresult is significant because it points out that, for a
given topology and a given infection model, some nodes in
the network are more prone to being attacked than others.
Itisnot difficult to imagine that these nodes occupy critical
locations where a viral infection must revisit in order to
propagate to different parts of the system. Note that charac-
teristics such as the reinfection rate cannot be easily cap-
tured using simple analytic models, as it is the function of
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many factors including time, the infection model, and the
underlying topol ogy.

6.2. Cluster topology

A similar set of experiments were conducted for the
cluster network topology. Figure 5 shows the distribution
of the total infection time for 1,000 runs of the baseline
infection model. Aswith the hierarchic model, agreat deal
of variation existsin timeto infect the entire network. Fig-
ure 6 shows the rate of propagation across the 1,000 runs
with the baseline infection model. The initial infection
growth in the cluster network is greater than that of the
hierarchic case. However, infecting the last 10% of the net-
work in the cluster case took a significantly larger amount
of time than in the hierarchic network.

Figure 7 shows the rate of propagation for infection fan
outs of 2 and 5. As with the hierarchic case, a much more
rapid propagation resulted from higher values of fan outs.

Figure 8 shows the average number of reinfections for
each of the 1,000 nodes in the cluster network across the
1,000 runs in the baseline case. The level of variation we
observed from the hierarchic model remains. Note once
again how the number of reinfections varied across nodes,
i.e., acertain population of the network was attacked much
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more often during an infection.
7. TheEffect of Immunization

The result of our analysis showed that viral infection
can propagate at an alarming speed in systems where
dynamic detection and remedy are not present. Further-
more, the infection characteristics experienced by individ-
ual nodes vary significantly, and that these variations might
be inherent to the propagation process. It begs the question
of whether one could exploit these individual variations in
the design of defense mechanisms, and so in this section
we explore the effect of immunity.

Immunization in the computational realm is the ability
to prevent a viral program from executing and replicating
further to other hosts. There are many reasons a node might
beimmune to a virus. For example, a host running Unix is
immune to Windows-based viruses, or a node can become
immunized against a particular virus if the ways that the
virus exploits the underlying host are disabled.

It is not our intent to investigate the ways in which
immunization can be achieved. Rather, assuming that
immunization techniques exist, our goa is to examine what
the most effective strategy is for immunization. Clearly, it
is often not feasible to immunize the entire network. A
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more realistic approach would be to immunize a subset of
the population, and so choosing the appropriate size and
membership of that subset becomes an important question.

7.1. Random immunity

Thefirst set of immunization experiments we conducted
was with random immunity, i.e., for each trial, a set of
nodes was selected at random to be immune. The objective
of experimenting with random immunity wasto investigate
the effect of immunization with respect to the size of the
immunized population. In this case it is not important
which nodes are immunized, but how many.

We performed experiments using the multiple fan out
infection model on both the hierarchic and cluster topol-
ogy, with 1%, 5%, and 10% of the population immunized.
For each of the 1,000 runs, the simulation ran until all of
the copies of the virus died (by propagating to immune
nodes) or 100 virtual time ticks were reached. For the 1%
immunity case, the immune nodes successfully killed off
the virus in 19 out of 1000 runs. As the immunity level
increased, the probability of epidemic decreased; in the 5%
immunity case 147 of the 1000 runs resulted in elimination
of the virus, and in the 10% immunity case 227 did not sur-
vive due to the virus' eimination.

For the simulation runs in which the virus survived and
successfully propagated, we recorded the rate of propaga-
tion for each trial, and computed the average rate of propa-
gation over those runs (981 for the 1% case, 853 for the 5%
case, and 773 for the 10% case). Figure 9 shows the aver-
age rate of propagation for the various immunity levels in
the hierarchic topology. As shown in Figure 9, there islittle
difference in the rate of propagation of 1% immunity and
that of no immunity. A significant decrease in the rate of
propagation occurred as the size of the immunized popula-
tion rose to 5%, and more so with 10% of the population
immunized.

Similar outcomes were observed with the cluster topol-
ogy. With 1% of the population randomly immunized, the

Figure 10: Average rate of propagation

virus was completely eliminated in only 20 runs, but with
5% immune that figure rose to 110 runs and with 10%
immune it occurred 248 times. Figure 10 shows the aver-
age rate of propagation for the cluster topology with the
various immunity levels in the remaining runs where the
virus survived.

The result of these experiments is intuitive. One would
expect a lower rate of infectious spread when more mem-
bers of the population are immunized. The reason that
immunization performs better in the hierarchic topology is
also intuitive: in a hierarchic structure, there is only one
path from one node to any other node. It istherefore possi-
ble to cut off an entire subtree of population if the root
node of the subtree was immunized and the infection
started from outside of that subtree. In the cluster topology,
however, there may exist multiple paths between clusters,
and similarly between pairs of nodes. Immunization could
slow down the spread of infection, but not at the samerate
or magnitude asin the hierarchic case.

In practice, random immunity models the scenario in
which a large network consists of independently adminis-
tered subdomains. Although the goal isto immunize all the
nodes in the network, many remain vulnerable for various
reasons—cost, defective installation, lack of awareness,
and so on. In such cases, the nodes which are properly
immunized are likely to be “randomly” distributed through
the network. Knowing something of the effect of such
incomplete immunization is therefore useful.

7.2. Selectiveimmunity

A second set of immunization experiments was
designed to investigate the effect of selective immunity. By
selective immunity we mean that the set of immunized
nodes is prescribed and they remain the same throughout
different trials of the experiment. The objective of this
experiment was to investigate how the dynamics of viral
propagation were affected by the details of which nodes are
immunized, in addition to how many are immunized.
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Figure 11: 1% immunization

As seen in the results presented in Section 6, there exist
nodes that tend to be much more heavily attacked than oth-
ersduring aviral infection. This suggests that the locations
of these nodes bear more importance for viral propagation,
and that a careful investigation of immunizing precisely
these locations is a worthwhile exercise. In these experi-
ments, we identified the population with the highest rein-
fection counts as indicated by the control study for each
topology, and selected three sets, the nodes with the top
1%, 5%, and 10% rates of reinfection, as the targets of
immunization.

7.2.1. Hierarchic topology. For the hierarchic topology,
the immunized population was selected as the ones with
the highest reinfection counts seen in the control study.
This set also corresponds to the set of nodes with the most
number of neighbors in the topology. We performed 1,000
runs with 1%, 5%, and 10% of the popul ation immunized;
for each run, the infection fan out parameter was set to at
most 2. As in the random immunity case, each simulation
run ended when all of the copies of the virus died or 100
virtual time ticks were reached. Out of the 1,000 runs with
1% of the population selectively immunized, the virus was
completely eliminated in 105 cases (compared to 19 runsin
the random immunity case). Figure 11 shows the average
rate of propagation in the remaining 895 runs with 1% of
the popul ation selectively immunized, plotted with random
immunity and no immunity for comparison. Selective
immunity performed considerably better than 1% random
immunity.

The reason for this difference is that the set of immu-
nized nodes included the root nodes of two substantial sub-
trees. In effect, this partitioned the network into severa
large chunks and any virus outbreak from a single point is
capable of infecting a single piece only, not the entire net-
work. In this aspect, immunizing a low-level node (e.g. one
that is a leaf or a near-leaf node) is not as effective as
immunizing high-level nodes. As the size of the immu-
nized population rises, the network becomes further frag-

Figure 12: 1% immunization

mented, and the probability of an epidemic developing
diminishes. In the experiment where we immunized 5% of
the population selectively, the virus survived in only 476
out of 1,000 trials (compared to 853 runsin the random 5%
immunity experiment). Even more telling is the average
rate of propagation in the remaining 524 runs: the virus
only infected an average of 13 nodes even when it did sur-
vive. This further quantified the conclusion that in some
network topologies (e.g., a hierarchic network), it is more
important and cost-effective to concentrate on who should
be immunized rather than the size of the immunized popu-
lation.

7.2.2. Cluster topology. A cluster network hasvery differ-
ent characteristics than a hierarchic network. For example,
there is no longer a single path between any pair of nodes,
and depending on the connectivity between clusters, such a
topology can be easily transformed to represent either a
random graph or astrongly connected network topol ogy.

In the cluster network, however, the set of nodes with
the highest reinfection countsin the cluster control study is
not the same as those with the largest number of links. The
reason is that in this cluster network, the top 20% of the
nodes that were attacked the most often belong predomi-
nantly to a few clusters. Not surprisingly, these clusters
have the most links to other clusters. If the cluster graphis
transformed into another graph where each cluster is repre-
sented by a single node, it is then readily apparent that, in
the second graph, these “cluster-nodes’ with a greater
number of links to other clusters will be attacked more
often than others, and that nodes belong to those clusters
are likely to have a higher number of reinfections.

We were interested in examining the effect of immuniz-
ing the set of nodes with the highest reinfection rate aswell
as those with the most important links. For convenience,
we refer to the former as target set #1 and the latter as tar-
get set #2. Intuitively, inter-cluster links are more impor-
tant than those that connect nodes in the same cluster. To
take this factor into consideration when determining target
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Figure 13: 5% selective immunity (cluster)

set #2, we used a weighting schemein adefinition of “con-
nectivity”—an inter-cluster link is weighted ten times as
much as an internal link.

Again, we selectively immunized 1%, 5%, and 10% of
the total population and performed 1,000 trias, each until
all copies of the virus were eliminated or virtual time 100
was reached. Table 1 shows the number of epidemics—that
is, runs where the virus survived—that occurred for both
target sets across the different levels selective immuniza-
tion.

The data in Table 1 shows that target set #1 (chosen

Immunized Random Target set Tar get set

population selection #1 #2
1% 980 897 970
5% 890 604 880
10% 752 306 770

Table 1: Number of epidemics in 1,000 runs

based on reinfection count) consistently results in fewer
epidemics than both the random immunity sets and target
set #2 (chosen based on number of weighted links). In
other words, the immune nodes in target set #1 were far
more successful in killing off all of the copies of a vira
propagation than the other two strategies. Random immu-
nity and target set #2 produced roughly the same results
over 1,000 runs, with target set #2 being more effective
with the smaller immune populations.

In the runs in which the virus survived, the average rate
of propagation was calculated. Figure 12 shows the aver-
age rate of propagation with 1% of the population immu-
nized. Both target sets display a slightly better rate of
propagation than the random immunization case, although
target set #2 exhibits a slower rate than al others at earlier
pointsin time.

Figure 14: 10% selective immunity (cluster)

Figures 13 and 14 show the average rate of propagation
for epidemics with 5% and 10% of the population selec-
tively immunized, respectively. In both cases selective
immunization performed significantly better than random
immunization. Target set #2 again demonstrated a slower
rate of propagation at earlier pointsin time, although in the
10% selective immunization experiment it maintained the
better rate of propagation throughout.

7.3. Analysis of immunization

These results show that by both measures of effective-
ness—number of epidemics and average rate of propaga
tion—selective immunization performs better than random
immunization. Injecting immunity into a carefully selected
set of nodes can yield a network in which more nodes are
likely to survive, the spread of infection is likely to be
much slower, and the possibility of epidemicis reduced.

Selective immunization in a hierarchic network is
straightforward. The most effective strategy isto immunize
a set of nodes with the most number of neighbors since
these nodes often correspond to root nodes of sizeable sub-
trees. The effect of immunizing these nodes is equivalent
to fragmenting the network into smaller subnets, and viral
propagation is then confined to individual subnets. Our
results also showed that a strategically placed 1% immu-
nity in a hierarchic topology is sufficient hamper or even
thwart many virus attacks.

Selecting the appropriate set of nodes to immunize in
the cluster topology is more challenging. The two target
sets we selected both yielded a slower infection rate than
random immunity. However, there is a trade-off involved
in the selection strategy’s effectiveness. Selection based on
the node reinfection rate (target set #1) consistently and
significantly prevented more epidemics from occurring, at
the cost of a higher rate of propagation in the case of epi-
demics. Selection based on the number of links, giving
inter-cluster links more weight (target set #2), did afar bet-
ter job in slowing the rate of propagation when epidemics



occurred, but was not as effective in stopping epidemics
from occurring. In any case, compared to the hierarchic
model, a larger immunized population is required in the
cluster topology to achieve a similar effect—a 5% immu-
nity produced, on average, a 46% reduction in the initial
infection growth, in contrast to the 38% reduction created
by a1% immunity in the hierarchic case.

In general, it is an encouraging result that selective
immunization outperformed random immunization, partic-
ularly in the absence of dynamic detection and defense
mechanisms. Rather than focusing on the size of theimmu-
nized population, better results can be achieved by care-
fully selecting the individuals to be immunized, and then
ensuring that those nodes are properly immuni zed.

What these simulations did not tell usis how to general-
ize the observations made here to other kinds of network
topologies. Clearly, the underlying topology has a substan-
tial impact on theimmunization strategy. A comprehensive
understanding of the role of topology and to what degree it
impacts the immunization decision will be possible only
when more comprehensive analytical models are devel-
oped to capture the essence of the underlying topology and
theinfection characteristics.

Nevertheless, studies such as this are helpful in many
ways. First, this study produced results based on which
some general statements can be made about the effect of
immunity, both random and selective. Even in cases where
the results are intuitive and produced little surprise, it is
still beneficial to confirm intuitions with statistical results
and to express them in numbers that can be easily com-
pared and understood. Second, it provided a starting point
where analytical modeling can use to instrument its per-
spectives and verify its assumptions.

8. Conclusions

In this paper we have presented the results of a simula
tion study on the characteristics of viral propagation in
computer networks. The study was carried out as part of an
ongoing effort to identify characteristics of infection that
might be used to detect and treat infections while they are
underway. Two network topologies were considered, and
the effect of selective immunity wasinvestigated.

As an approach to defending against viral infections,
immunization is well-understood in the classical epidemi-
ology sense. In the computational realm, however, it has
not been examined closely. We investigated immunization
as a potential defense mechanism, and showed that in cer-
tain topologies, a relatively small number of strategically
placed immune nodes can have a significant effect on viral
propagation.

The results obtained in this study only cover a small
range of the possible investigations that might be con-

ducted. Some of the conclusions drawn are preliminary and
much work still remains before a comprehensive under-
standing of viral propagation in large networks can be
obtained.
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